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Abstract—Acoustics has received a great research interest for
human activity detection in indoor and outdoor environments.
Compared to vision-based approaches, microphones can achieve
a high percentage of recognition accuracy in a variety of activities,
while not being affected by lighting conditions. Furthermore,
audio-based activity detection can be considered an unobtrusive
method, as long as the data is not related to speech or other
sensitive information and no data is sent on cloud. Selecting the
appropriate audio features that can achieve a high recognition
accuracy and generalize in multiple domestic environments is
a challenging task. In this work, three of the most commonly
used spectrogram representations are evaluated, based on their
spectral magnitude and the spectral energies. Specifically, using
multi-channel audio data, the Short-time Fourier Transform
(STFT), the Mel and the Gammatone spectrograms are extracted
and trained on a 2D Convolutional Neural Network (CNN). The
F1-Score of each feature representation are computed, while the
McNemar tests and the Receiver Operating Characteristic (ROC)
curves ensure the statistical independence between the magnitude
and the energy representations. Extensive experimental results
on a public database for detection of daily activities in a home
environment, show that the overall highest recognition accuracy
is achieved by the STFT magnitude representations.

Index Terms—Sound event detection, activity recognition, con-
volutional neural networks

I. INTRODUCTION

Human activity is one of the most important aspects of
context information, which can be used for a plethora of
ubiquitous applications [1]. Activity recognition is a tool that
can provide real-life benefits in human-centered applications
and sectors, such as healthcare and eldercare. It is one of
the most promising topics for a variety of research areas,
namely mobile and pervasive computing [2], [3], context-
aware computing [4]–[6] and ambient assistive living [7]–[10].

Human activity recognition (HAR) mainly consists of four
basic tasks; to choose and deploy appropriate sensors to
objects and environment to monitor and capture relevant
behaviour; to collect, store and process the data; to create
models that learn the mapping between the aforementioned
data and the set of activities of interest; and finally to develop
algorithms to infer the activities from sensor data [11].

The sensor selection and deployment is crucial, as it needs
to satisfy and comply with the nuances of the problem at
hand, including the location, the ambient environment and
the user profile and requirements. With regard to the type of
sensor that is used for monitoring, activity recognition can be
classified into two categories; vision based and sensor based

[11]. The former is based on the use of video sensing facilities
(e.g., video cameras) and exploits well-known computer vision
techniques. Although playing a prominent role in the industry,
image and video-based techniques are not always sufficient.
For example, body pose can be used to classify a large range
of human activities, but posture information cannot always
provide unique evidence about the actions a human is engaged
in, as quite different activities can be carried out in resembling
body poses [12]. Thus, the second category has emerged, the
sensor-based HAR. This usually involves the processing of
time series data of state changes and various parameter values.
Audio techniques can supplement this set of sensors or even
be used on their own as a standalone solution for specific cases
[13].

Until recently, the main focus of sound analysis research
was on speech recognition [14], music classification [15]
and speaker identification [16]. These methods’ applicability
on environmental audio analysis is limited, as there is a
fundamental difference with regard to speech, in that there is
no underlying phoneme-like structure. Furthermore, another
important difference from speech recognition or speaker iden-
tification is that typically there is close proximity between the
sound source (human speech) and the microphone, so as to
ensure that the background sound energy is lower than the
foreground one, not impairing the recognition system. This is
not always true in the case of environmental audio classifi-
cation [17], where the Signal-to-noise ratio (SNR) has been
shown that can significantly affect the recognition accuracy
[13].

To date, deep neural networks (DNNs) piqued research
interest, owing to the fact that they outperform traditional clas-
sification techniques in several application domains, as well as
that the cost of modern graphics processing units is relatively
small. In the computer vision domain, CNNs have been widely
adopted directly over raw video and image data in several
application fields [18]–[20]. However, recently, deep learning
methods are revealing their effectiveness also in applications
of audio analysis; although a taxonomy of the published
papers is still far from realized, two main emerging trends
can be distinguished. The first consists of methods that analyze
directly the raw audio data in the time domain by exploiting
Deep Belief Networks or Restricted Boltzmann Machines [21],
[22]. These approaches are related to the use of temporal-based
features, which are not generally handcrafted but extracted



with the help of deep networks. The second trend consists
of methods that use precomputed representations obtained by
CNNs, starting from raw data. A good example is offered
by the various time-frequency representations of the input
signal, such as the STFT spectrogram or the Mel-Frequency
Cepstral Coefficients spectrogram [23], [24]. AENet [25],
SoReNet [26] and AReN [27] are recent contributions to this
field and outstanding examples of a CNN fed by spectrogram
images achieving very promising results for the problem of
sound event recognition. Hence, it can be easily concluded
that the representation automatically extracted by means of
deep networks is definitively better in finding a high level
representation of the data and is confirmed by various studies
[28], [29].

Research using STFT, mel and gammatone spectrograms
is abundant throughout the literature. The studies are either
focused the magnitude representation [30] of spectrograms, or
the corresponding spectral energies [31]. The selection of the
spectrograms for environmental sound classification was based
on their high recognition accuracy in various tasks such as
music genre classification or speech recognition. Furthermore,
the main focus of past research is typically on the CNN
architectures for classification or novel data augmentation
techniques. The scope of the present work is the extensive
evaluation of three different spectrogram types (STFT, mel
and gammatone) based on their magnitude representation,
where the input features are pixel values from 0 to 255,
and their spectral energies, where the input features are the
frequency energies at each time frame. To the best of the
authors’ knowledge, this is the first attempt where the spectral
magnitude representations and the spectral energies of the
three aforementioned spectrograms are studied for the task of
domestic audio-based human event detection.

The paper is organized as follows. In Section II the feature
extraction methods and the network architecture used are
presented. Section III demonstrates the experimental results,
while the final conclusions are drawn in Section IV.

II. METHODOLOGY

Since the main objective of this study was the audio-
based human activity detection in a domestic environment,
it was important to use an annotated real-world dataset. Based
on this, the dataset that was selected was the development
set of a derivative of the SINS database [32], used for the
Task 5 of the DCASE 2018 challenge. The particular part
of the dataset consists of continuous audio recordings of
approximately 200 hours of data from 4 sensor nodes of one
person living in a vacation home over a period of one week.
Each microphone array consisted of four linearly arranged
microphones. The continuous recordings were split into audio
segments of 10 s. Segments containing more then one active
class (e.g., a transition of two activities) were left out, so each
segment represented one activity. Data was labeled on daily
activity level, ranging within nine different activities (absence,
cooking, dishwashing, eating, other, social activity, vacuum

cleaner, watching TV and working). For evaluation the cross-
validation folds provided by the challenge organizers were
used

(a) STFT magnitude representation

(b) Mel magnitude representation

(c) Gammatone magnitude represen-
tation

Fig. 1. 2D magnitude representations for the vacuum cleaner class. The x-
axis represents the time (10 s) and the y-axis the frequencies (up to 8 kHz
based on the Nyquist theorem)

The most common representation encountered in the lit-
erature for environmental sound classification, is the spec-
trogram. A spectrogram could present the linear frequencies
(STFT), mel frequencies, or gammatone frequencies. The mel
frequency spectrogram is a time-frequency visualization, but it
is adapted on how sound is perceived by the human auditory
system; most significantly, the ear’s frequency sub-bands get
wider for higher frequencies, whereas the spectrogram has a
constant bandwidth across all frequency channels. A Gam-
matone spectrogram or gammatonegram is a time-frequency
visualization based on a Fast Fourier Transform (FFT)-based
approximation to gammatone sub-band filters, for which the
bandwidth increases with increasing central frequency. The
aforementioned three different-magnitude representation types,
extracted from the raw audio using the LibROSA [33] library,
were studied; STFT, mel (the same representation, with the
only difference that the frequency axis is scaled to the mel
scale using overlapping triangular filters) and gammatone
spectrograms (using overlapping gamma distribution filters).

The parameters used throughout all the experiments were
a sampling rate of 16 kHz, which was the original sampling
frequency of the dataset. The four audio channels were av-
eraged into a monophonic audio and an FFT size of 512
with 512 samples between successive frames (hop length).
The FFT size and hop length were selected so as to result in
an array that was as close to a rectangular shape, preserving



the same information in the frequency and the time axes.
For the mel and the gammatone spectrograms, 128 mel bins
and 128 gammatone bins were selected, respectively, since
no significant information, except for weak harmonics, was
noticed in higher frequencies. The colour mode for all repre-
sentations was grayscale and the resulting shape for the STFT
shape was 257×313×1, and 128×313×1 for the mel and
gammatone spectrograms (Figure 1). Two ways of providing
the input spectrograms for the models in the present study were
used. The first was by feeding the model with image input
(magnitude representation) and array input (spectral energy
representation). The process of producing the former type
of representation was done by using the specshow function
of the LibROSA package, while the conversion from RGB
to grayscale was carried out with the Rec.601 standard as
described in [13].

For the training and testing processes, Python libraries such
as TensorFlow [34], SciPy [35] and Spafe [36] were utilized.
The deep learning network architecture that was selected for
the features of this study was the B0 variant of EfficientNet
(Table I) [37] and was trained on a Nvidia RTX 3090 graphics
card.

TABLE I
EFFICIENTNET-B0 STRUCTURE FOR THE STFT REPRESENTATIONS

Stage Operator Resolution #Channels #Layers
i F̂i Ĥi × Ŵi Ĉi L̂i

1 Conv 3×3 257×313 32 1
2 MBConv1, k 3×3 129×157 16 1
3 MBConv6, k 3×3 129×157 24 2
4 MBConv6, k 5×5 65×79 40 2
5 MBConv6, k 3×3 33×40 80 3
6 MBConv6, k 5×5 17×20 112 3
7 MBConv6, k 5×5 17×20 192 4
8 MBConv6, k 3×3 9×10 320 1
9 Conv 1×1 & Pooling & FC 9×10 1280 1

As the goal of this study was to solely evaluate the effect
of the selected audio features on the event-based detection of
human activity, no augmentations in the audio or the image
domain (e.g., pitch shift, dynamic range compression and
image rotate), were applied.

III. RESULTS AND DISCUSSION

The models were initially set to train for 200 epochs. The
Adam optimizer was used, with an initial learning rate of
0.001, β1 of 0.9 and β2 of 0.999. In order to avoid overfitting
during the training phase, an early stopping criterion was
applied, with a patience of eight consecutive epochs. Addi-
tionally, there was an extra reduction of the learning rate of
the optimizer when there was no improvement in the validation
macro F1-Score for 5 consecutive epochs.

In Table II the F1-Scores for all spectrogram approaches
(STFT, mel-spectrograms and gammatonegrams) and input
types (2D magnitudes and 2D energies) are shown. The
proposed 4-fold validation split was used. The classes were
unbalanced, skewed towards the absence, working and watch-
ing TV classes, which was the reason to use the macro F1-
Score as the evaluation metric. An example (taken from [38]
of the class balance can be seen in Figure 2. Fold 3 proved to

Fig. 2. Data distribution of each activity in Fold 1 of the development dataset
(borrowed from [38]). Folds 2, 3 and 4 follow a similar distribution.

be the most challenging one with the F1-Scores ranging from
83.4% for gammatone magnitude representation to 87.92%
for the respective STFT representation. On the other hand,
the best performance was exhibited in Fold 4 where the F1-
Score varied from 91.76% (mel magnitude representation) to
93.35% (STFT magnitude representation). On average, the
magnitude representation showed better performance than the
spectral energies in the case of STFT features, while the
opposite was evident for the mel and gammatone features.
McNemar testing was carried out to determine the proportion
of errors between the selected features for the 4-fold evaluation
setup. The selected p-value was set to 0.05 and comparing the
spectral energies with the magnitude representations for the
three audio features, the null hypothesis was rejected for each
pair, ensuring they were statistically significant.

The albeit slightly better performance of the STFT repre-
sentations compared to the other two, most probably owes to
the fact that the STFT can map more abstract information.
On the other hand, mel and gammmatone representations are
more suited to speech as they both try to mimic the human
auditory system, in the way of boosting lower frequencies and
reducing higher ones. The former attempt that using triangular
filters that abruptly cut specific frequencies, while the latter do
that with gamma distribution filters which provide smoother
filtering of the frequencies. It must be noted that the model
trained on the STFT magnitude representation outperformed
the baseline model in [39] in terms of F1-Score, which used
mel spectral energies as input to a 1D CNN classifier, by
7.04%.

In Figure 3 the t-distributed Stochastic Neighbor Embedding
(t-SNE) plots are shown. for all representations with the False
Positive rate on x-axis and True Positive rate on y-axis. It
can be seen that in all cases, vacuum cleaning (brown), social
activity (yellow), watching TV (pink) and cooking (blue)
are easier to distinguish from the rest of the classes in the
dataset. Eating (purple) and dishwashing (green) are found
neighbouring in all representations, while working (grey)
and absence (red) are difficult to distinguish between, most
probably owing to the background noise sharing the same
features. The ‘other’ class (orange) is found neighbouring



TABLE II
F1-SCORE OF THE STFT SPECTROGRAMS, MEL-SPECTROGRAMS AND GAMMATONEGRAMS ON THE DEVELOPMENT SET OF THE SINS DATABASE

SINS dataset features Development Dataset F1-Scores
Fold 1 Fold 2 Fold 3 Fold 4 Average

STFT spectral energies 90.48% 89.66% 85.37% 92.69% 89.55%
magnitude representation 90.99% 90.41% 87.92% 93.35% 90.67%

Mel spectral energies 90.56% 89.82% 85.46% 93.02% 89.71%
magnitude representation 89.89% 90.56% 86.05% 91.76% 89.57%

Gammatones spectral energies 90.24% 90.21% 84.96% 92.43% 89.46%
magnitude representation 89.32% 89.08% 83.4% 91.83% 88.4%

(a) STFT magnitude (b) STFT energies

(c) Mel magnitude (d) Mel energies

(e) Gammatones magnitude (f) Gammatones energies

Fig. 3. t-SNE plots for the nine classes. The mapping between the displayed colors and classes are as follows. Absence is the red color, cooking is in blue,
dishwashing in green, eating in purple, other in orange, social activity in yellow, vacuum cleaning in brown, watching TV in pink and working in grey.

with different activity classes, depending on the representation,
which was expected as it shares features with most of the
classes. This is also evident in Figure 4, where the Receiver
Operating Characteristic (ROC) curves for all classes and each
representation are shown. In all cases the area under curve of
the ‘other’ class was the smallest among all classes, ranging

from 0.89 for the mel magnitude representation to 0.92 for the
mel spectral energies.

IV. CONCLUSIONS

Recognition of human activity is typically associated with
computer vision, but recently audio analysis has received a
great research interest due to the fact that it can achieve



(a) STFT magnitude (b) STFT energies

(c) Mel magnitude (d) Mel energies

(e) Gammatones magnitude (f) Gammatones energies

Fig. 4. ROC curves for the nine classes. Classes 0-8 are mapped alphabetically as follows. Absence, cooking, dishwashing, eating, other, social activity,
vacuum cleaning, watching TV and working.

high recognition accuracy in a range of activities, while si-
multaneously being relatively unobtrusive and not affected by
lighting conditions. The present study shows that simple audio
based solutions can be applied to HAR. A comparison between
STFT, mel and gammatone, magnitude and energies represen-
tations were compared, with STFT magnitude representation
exhibiting the best performance in terms of F1-Score. STFTs
are known to be better than mel and gammatone spectrograms
due to the fact that they can map abstract information more
accurately than mel and gammatone spectrograms that try
to emulate human hearing and are more suited to speech

rather than environmental audio. Environmental audio signals
are non-stationary, which renders them not generalizable.
Moreover, McNemar tests and ROC curves analysis showed
the statistical independence between every pair of this study.
Future work includes the use of simpler CNN architectures
and inference on other public datasets for domestic human
activity detection (e.g., DASEE [40]).
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