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Abstract—Mobile service robots are proving to be increasingly
effective in a range of applications, such as healthcare, monitoring
Activities of Daily Living (ADL), and facilitating Ambient As-
sisted Living (AAL). These robots heavily rely on Human Action
Recognition (HAR) to interpret human actions and intentions.
However, for HAR to function effectively on service robots, it
requires prior knowledge of human presence (human detection)
and identification of individuals to monitor (human tracking). In
this work, we propose an end-to-end pipeline that encompasses
the entire process, starting from human detection and tracking,
leading to action recognition. The pipeline is designed to op-
erate in near real-time while ensuring all stages of processing
are performed on the edge, reducing the need for centralised
computation. To identify the most suitable models for our mobile
robot, we conducted a series of experiments comparing state-
of-the-art solutions based on both their detection performance
and efficiency. To evaluate the effectiveness of our proposed
pipeline, we proposed a dataset comprising daily household
activities. By presenting our findings and analysing the results,
we demonstrate the efficacy of our approach in enabling mobile
robots to understand and respond to human behaviour in real-
world scenarios relying mainly on the data from their RGB
cameras.

Index Terms—Mobile Robots, Human Action Recognition,
Pipeline, Activities of Daily Living

I. INTRODUCTION

The integration of robots into human lives is increasingly
common as people become more comfortable interacting with
them. In healthcare, autonomous mobile service robots show
great promise in supporting caregivers and family members
responsible for patients. Moreover, ambient assisted living
benefits from robotic companions that monitor the well-being
of elderly or impaired individuals in various settings such
as homes, nursing homes, and hospitals. To enable robots to
comprehend and respond to human behaviour, human action
recognition systems play a vital role. These systems allow
robots to deduce information about a person’s state, behaviour,
and intentions, ranging from providing emergency assistance
to understanding daily activities. Nonetheless, before imple-
menting such capabilities on service robots, certain preceding
steps need to be addressed. In practice, HAR represents the
final stage of a larger pipeline, as discussed in detail in Section
III. The pipeline commences with user recognition and iden-
tification among multiple individuals. A tracking algorithm is
then employed to follow the user within the robot’s operat-
ing space. Once these prerequisites are fulfilled, the action

recognition algorithm accurately gathers user information [1].
In Autonomous Mobile Robot (AMR) applications, HAR is
crucial as the robot’s behaviour depends on the activities of its
human counterpart. For instance, a vision-based system should
continuously recognise human actions in a live streaming
scenario without prior knowledge of when actions start or end.

Deploying human action recognition systems on mobile
robots requires careful and precise design of their pipelines,
along with the selection of lightweight algorithms for each
stage. However, there are several challenges that arise when
deploying vision-based HAR algorithms on mobile robots,
as discussed in [2], [3]. These challenges include variations
in point of view, illumination, shadows, and scale due to
the different positions the robot may take while operating
as discussed by Ahmad et al. [4]. Near real-time, on-device
performance is a crucial requirement for such systems, en-
abling the robot to respond and plan accordingly to human
actions. Furthermore, optimising resource utilisation is essen-
tial to avoid overburdening the system. Offloading part of the
processing to a server or the cloud may restrict the system’s
performance due to limited bandwidth or other communication
barriers.

This paper introduces an edge-based end-to-end human
action recognition pipeline designed for mobile service robots.
To achieve near real-time performance, we employ efficient
and lightweight algorithms such as OpenPose and X3D at
each stage of the pipeline. Extensive research and analysis
have been conducted to select the most suitable HAR model,
with a focus on minimising resource utilisation. To evaluate the
effectiveness of our approach, we utilise a newly introduced
dataset that comprises seven distinct actions. This dataset
combines data from various publicly available datasets along
with newly captured data from a demonstration infrastructure
for rapid prototyping and novel technologies at our premises.
The main contributions of this paper can be summarised as
follows:

• An end-to-end solution for recognising human actions
via a mobile robot in near real-time with all processing
in each stage performed on the edge utilising a 3D-
based user tracking algorithm and an overlapping sliding
window pre-processing technique for higher-quality HAR
predictions.

• The introduction of a dataset on daily activities that



combines data from various public datasets with newly
generated data from a Smart House environment dedi-
cated to rapid prototyping and emerging technologies.

• A thorough evaluation and comparison of state-of-the-art
human action recognition models on the proposed dataset,
with a particular focus on resource utilisation and near
real-time, on-device performance.

II. RELATED WORK

In their work, Kumar and Sukavanam [5] delve into the
critical analysis of human activities, focusing on spatial and
temporal dynamics. Their study concentrates on skeleton-
based human activity recognition, proposing a novel motion
trajectory computation method that utilizes Fourier temporal
features derived from interpolated skeleton joints. Yucer and
Akgul [6] proposed an approach defining the 3D human action
recognition as a Deep Metric Learning (DML) challenge,
wherein a similarity metric is acquired between distinct 3D
joint sequence data via deep learning techniques. The proposed
DML network adopts a Siamese-LSTM (S-LSTM) architec-
ture, featuring two parallel networks with shared parameters.

In recent years, there have been several attempts to tran-
sition from assessing the performance of HAR models on
static datasets to evaluating their performance in real-world
scenarios when deployed on edge devices such as mobile
robots. Xia et al. [7] proposed a framework that adopts an
RGBD camera to explore human-robot activities and inter-
actions from the viewpoint of the robot. They captured two
multi-modal datasets comprising RGB, depth, and skeleton
data, and evaluated their system using these datasets. In their
work, Rezazadegan et al. [8] introduced a novel approach
for generating action region proposals that are robust to
camera motion. They utilised convolutional neural networks
(CNNs) to jointly detect and recognise human activities. They
evaluated their HAR system on both existing public datasets
and newly introduced ones. J. Lee and B. Ahn [9] utilised
two open-source libraries, namely OpenPose [10] and 3D-
baseline, to extract skeleton joints from RGB images using
convolutional neural networks to classify human actions. Their
system was deployed on a robotic platform equipped with an
NVIDIA JETSON XAVIER and evaluated using the NTU-
RGBD benchmark [11].

S. Hoshino and K. Niimura [12] proposed a robot vision
system that employs optical flow to describe original im-
ages and classify human action. The system consists of two
convolutional neural network classifiers for image inputs as
well as a novel detector for extracting partial images of the
target human. To facilitate camera movement, a set of optical
flow modifications were proposed and implemented. Hsieh
et al. [13] presented an online Human Action Recognition
system that detects humans using OpenPose and tracks them
using DeepSort [14] before performing action recognition.
An LSTM-based classifier utilising RGB, optical flow, and
skeleton features to classify actions was proposed. The method
was evaluated on the CVIU Moving Camera Human Action

dataset, demonstrating promising results. However, the combi-
nation of models used at each stage may limit edge deployment
and real-tiem performance. Wang et al. [13] proposed an ar-
chitecture for human action recognition at the AI’s edge. They
are based on OpenPose and DeepSort for human detection and
tracking, and on bidirectional long-short-term memory (DL-
BiLSTM) for human action recognition, with input from the
DenseNet121 feature extractor. To increase system efficiency,
they proposed two optimisations: Robot Operating System
(ROS) [15] distributed computation and TensorRT structure
optimisation, which allowed them to perform and execute their
pipeline entirely on their autonomous mobile robot.

The current solutions frequently fail to fulfil or overlook
the near real-time demands and constraints posed by robotic
platforms, since they evaluate their methods on hardware
unsuitable for mobile robots, such as the NVIDIA GTX
1080 used in previous works, [9], [12], and [13]. In contrast,
our proposed pipeline focuses primarily on efficiency and
deployability directly on the edge, specifically on the mobile
robot, without the need for external hardware offloading.
Moreover, we carefully consider and compare against state-of-
the-art models, including X3D [16], Swin-Transformer [17],
and TimeSformer [18], while building our HAR system.

III. PIPELINE ARCHITECTURE

Our proposed pipeline incorporates and combines a number
of algorithms at each phase, making the required changes to
them as needed to adapt to the robotic system’s dynamic and
near real-time nature. Figure 1 depicts a high-level overview
of the pipeline and its components. Human detection, human
tracking, and human action recognition are the three basic
processes involved in the execution of the robot’s pipeline, and
each of them is further broken down into a finer description
made of sub-modules.
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Skeletons
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Final predictionsRGB-D Input

Fig. 1: The proposed pipeline architecture deployed end-to-
end on the mobile robotic platform, from human detection
and tracking to action recognition.

As shown in Figure 2 the flow begins by capturing a raw
RGB image of the scene. Subsequently, the system detects the
skeletons of the humans present in the image. These detected
skeletons are then projected into a 3D space, providing the
necessary input and allowing the tracking algorithm to be
executed. Through this algorithm and to keep track of each
individual, the system assigns unique tracking IDs. Once
the user is identified, the system crops the corresponding
bounding box (bbox) around the user, ensuring that only
relevant information is provided as input to the HAR model.



(a) Raw RGB image from the
robot’s camera

(b) Projection of human skeletons
to the 3D space

(c) ID assignment to the detected
human skeletons

(d) Selection of user skeleton and
respective bbox for input to HAR

Fig. 2: The steps of the pipeline from the perspective of the robot Starting with capturing the raw RGB image, detecting the
skeletons of the people in the scene, projecting them to 3D space, assigning tracking IDs to each individual, and cropping the
user’s bbox to provide as input to the HAR model.

A. Human Detection

The detection of the user in the scene is the initial step in
our pipeline. To solve this challenge, we utilise the OpenPose
library with input taken from the robot’s RGB camera. Open-
Pose [10] provides multi-person 2D pose estimation in order
to understand people, their motion, and their presence in a
scene. The OpenPose [10] model extracts and localises skeletal
keypoints of persons using Part Affinity Fields (PAFs). Some
of the original model’s detected keypoints, like the keypoints
for the head, are removed or combined, in order to obtain
a more manageable representation of a person in 3D space.
Figure 3 (left model) depicts the human skeletal keypoints
proposed in OpenPose. Figure 3 (right model) depicts a
simplified human skeletal keypoints that we introduced to
better match the needs of our pipeline.

Fig. 3: Human skeletal keypoints

The final stage of the detection module is to project the
humans’ skeletal keypoints to 3D space. The required depth
information is obtained by the robot’s depth camera, which is
stored as a 2D image. Back-projecting from a 2D image to a
3D map of the space in which the robot operates requires
the camera’s intrinsic and extrinsic parameter matrices, as
well as the points of interest in the 2D image, as provided
by OpenPose. We consider the following pinhole camera
equation: p = K ∗R ∗P , where p is the projected point on

the frame, K is the camera intrinsic matrix, R is the camera
extrinsic matrix, and P is a 3D world coordinate point. In
intrinsic matrix K, the focal length (fx, fy) and the principal
point (u0, v0) are obtained through camera calibration. Given
the Z values from the depth image and the (u, v) points from
OpenPose, we solve the pinhole camera equation and obtain
the point in the 3D map as follows (assuming (u, v) and (X,
Y, Z) are in the camera’s coordinate frames, so the extrinsic
matrix R is not taken into consideration):

X = Z
u− u0

fx
, Y = Z

v − v0
fy

(1)

B. Human Identification & Tracking

The tracking of the user is the next phase in our pipeline.
The identification of the user is a vital step before moving
on to tracking. To accomplish that, we make use of a facial
recognition algorithm, where a CNN model [19] produces 128
features for each of the faces in a frame and compares them to
the stored features of already known people. After identifying
the user based on their face, we combine this information into
3D skeletons from the previous stage. At this stage, we’ve
recognised the user and can track them in 3D space.

The tracking method we employ is based on information
from the previous positions of the user in 3D space and the
estimation of distances between these positions and detected
skeletons at the current frame. To add memory to the tracking
system, we must match the skeleton of the user (identified by
face) from the previous frame to one of the detected skeletons
in the current frame, and forward all past knowledge. This is
important because face recognition will not always be able
to detect and match the user’s face with a skeleton. It is
worth noting that this process is repeated with each new frame
captured by the robot and its sensors. When the matching fails,
the tracking continues for a few frames as it attempts to recover
from an unsuccessful user matching with the skeletons. When
the tolerance period expires, the tracking ceases and the robot
resumes its search for the user using facial recognition. The
proposed tracking algorithm that our system utilises is shown
below:



Algorithm 1 Human Tracking in 3D

userSkel← prevKnownSkel ▷ Known user skeleton
diameter ← 1 ▷ Meters
for sk in skeletons do

curDistance← Distance(sk, userSkel) ▷ Euclidean
if curDistance < minDistance then

minDistance← curDistance
matchedSkel← sk

end if
end for
if minDistance ≤ diameter then

userSkel← matchedSkel
else

if timesUntracked > 5 then
userSkel← LOST

else
timesUntracked← timesUntracked+ 1
userSkel← UNKNOWN ▷ Tolerance

end if
end if

C. Human Action Recognition

The final stage in our pipeline is dedicated to recognising
human actions based on an input video stream. This data
can be leveraged to analyse human behaviour or predict
the robot’s next state, such as alerting a caregiver about an
extended period of the user lying down. Considering the
limited processing capabilities of edge devices, it becomes
essential to employ efficient and lightweight algorithms for
these applications to achieve near real-time performance.

Transitioning from fixed-duration videos, as seen in HAR
benchmarks, to near real-time streaming settings, such as
interactive mobile robots, necessitates a methodology for ap-
propriately feeding the HAR model with input data. To address
this, we employ an overlapping sliding window technique
that comprises a set of n frames sampled at a rate of sr.
The duration of the sliding window (tsw) is calculated as
tsw = n/sr. Additionally, we define a prediction window
(tpw) as the time between two subsequent sliding windows,
calculated as tpw = tsw−(n−m)/sr, where m represents the
number of newly introduced frames. Due to the overlapping
nature of consecutive windows, multiple predictions may arise
for a given time period, originating from different sliding
windows. In Figure 4, for instance, the first sliding window
with duration tsw spans three distinct prediction windows,
each with a duration of tpw. Upon making a prediction, we
store it and await the arrival of all predictions associated with
that time period. As depicted in Figure 4, the third time period
encompasses three separate predictions from the second, third,
and fourth sliding windows.

In the process of obtaining the final prediction for a specific
prediction period, it is necessary to combine multiple indi-
vidual predictions. The straightforward approach to address
this is through a majority voting mechanism. However, in

practical scenarios, particularly when the user is undergoing
a transition stage, the outcomes of sequential time windows
tend to exhibit instability. To mitigate this challenge, we
leverage the probabilities generated by the HAR model. For
each prediction period, the probabilities from all contributing
sliding windows are averaged. The final prediction is inferred
by selecting the larger number above a certain threshold that
has been fine-tuned through empirical experimentation.

IV. EXPERIMENTAL RESULTS

For the training of the HAR models we used a server-
grade system with two NVIDIA RTX3090 GPUs (24GB).
For the experimental evaluation we utilised an OZZIE mobile
robot1 with the following specs: Intel i5 CPU, NVIDIA
GTX1650 GPU (4GB) and Orbbec Astra RGBD camera. The
pre-processing steps regarding the preparation of the sliding
windows, as described in Section III-C, along with the post-
processing of the results were executed on the CPU of the
robot, while the HAR models were deployed on the GPU,
with the relevant metrics being discussed in Sections IV-B and
IV-C and depicted in Figure 5b. Lastly, the system is built upon
and utilises the following libraries: python 3.10, torch 1.13.1,
CUDA 11.6, CUDNN 8.8.1 and MMAction2 [20].

A. Dataset Description

While there are datasets such as MSRDailyActivity3D [21]
that contain a diverse range of human actions, they fall short
of capturing the full set of activities that we are attempting
to identify. For instance, NTU RGB-D [11] lacks actions
such as walking and lying, whereas UTD-MHAD [22] only
includes standing and sitting actions. NTU RGB-D videos
were recorded from a different angle than the robot’s view,
and MSRDailyActivity3D, while covering a wider range of
activities, has only twenty samples per class, which is insuffi-
cient for training our deep learning models. To address these
limitations, we’ve created a new dataset with seven categories:
drinking, eating, sitting, standing, walking, lying down, and
talking on the phone. The dataset was created by recording
RGB videos of 10 participants interacting with the robot, util-
ising its RGB camera in diverse setups. These setups included
different lighting conditions, occlusions, scales, and varying
positions of the robot relative to the users. By capturing such
varied interactions, the dataset aims to provide a comprehen-
sive and realistic representation of real-world scenarios. This
ensures that the AI model trained on this data can effectively
handle different environmental challenges, recognise objects
and actions even in partially obscured situations, and adapt to
various user distances and angles. The dataset’s richness in
diversity enables the AI model to be more robust and capable
of performing well in practical applications involving human-
robot interactions.

As shown in Table I, to further enhance and strengthen
our dataset, we also incorporated additional samples from
other publicly accessible datasets. We adopted a three train/test

1OZZIE robotics (https://www.ozzie-robotics.com)

https://www.ozzie-robotics.com
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Fig. 4: An overview of the proposed sliding window overlap methodology. The input RGB feed is displayed at the top of the
figure, organised into time windows of equal duration (tpw). The sliding windows (tsw) span across multiple tpw.

TABLE I: Dataset statistics

Class Videos
#

Avg Duration
(s)

Ours
(%)

NTU
(%)

MSR
(%)

UTD MHAD
(%)

Weizmann
(%)

ISLDAS
(%)

drinking 238 4.07 124(52) 94(39) 20(8) 0(0) 0(0) 0(0)
eating 271 4.65 157(58) 94(35) 20(7) 0(0) 0(0) 0(0)
sitting 227 3.43 61(27) 94(41) 40(18) 32(14) 0(0) 0(0)

standing 206 3.02 60(29) 94(46) 20(10) 32(16) 0(0) 0(0)
walking 352 2.73 96(27) 0(0) 20(6) 0(0) 10(3) 226(64)

lying 210 3.33 96(46) 94(45) 20(10) 0(0) 0(0) 0(0)
talking on phone 207 4.58 93(45) 94(45) 20(10) 0(0) 0(0) 0(0)

Total 1711 3.68 687(40.15) 564(32.96) 160(9.35) 64(3.74) 10(0.58) 226(13.2)

split experimental approach, following the UCF101 [23] and
HMDB51 [24] dataset division procedure. For every action
category in our dataset, we chose 80% of the examples for
training data and 20% for testing data. To assess the overall
performance of each one of the targeted models on our dataset,
we averaged their scores over the three splits.

B. Comparison of HAR Models

Our pipeline system’s final stage, human action recognition,
requires significant computing and memory resources. Thus,
we conducted an ablation study to find the best HAR model for
our system from a variety of state-of-the-art models, paying
specific emphasis to edge deployability. We evaluated both
3D CNN models like C3D, X3D [16], Slowonly [25], and
R(2+1)D [26], as well as newly introduced video Transformers
such as TimeSformer [18], and Swin-Transformer [27]. Each
model was fine-tuned on our introduced dataset after being
pre-trained on Kinetics-400 [28].

To evaluate the models, we employed different pre-
processing and sampling strategies based on the model’s
original configuration, as presented in Table II. The table
provides details on the number of temporal clips and spatial
crops used for evaluation, along with the Top1 accuracy and
specific characteristics such as the number of parameters,
FLOPS, and input shapes. As indicated in Table II and

Figure 5a, the X3D [16], Slowonly [25], and R(2+1)D [26]
models achieved the highest Top1 accuracy, making them
suitable choices considering only the recognition performance.
Although the transformer models generally outperform the 3D
CNN models in larger benchmarks like Kinetics-400, they
were unable to surpass the performance of the 3D CNN models
in our case due to the fact that Transformer models require a
significantly larger amount of training data to achieve state-
of-the-art performance, something that our mid-scale dataset
could not provide.

C. Deployment and Performance on the Mobile Robot

When deploying on edge platforms, like mobile robots,
model prediction performance is not the only factor to con-
sider. In such situations, near real-time performance and effi-
cient resource utilisation become crucial factors in determining
the most appropriate model. To evaluate the models in our
scenario, we deployed and evaluated each one on the OZZIE
mobile robot, measuring the GPU memory consumption and
inference time. The results of these evaluations are illustrated
in Figure 5b. Figure 5 demonstrates that the X3D model
achieves the best balance between memory consumption and
inference time, while maintaining its high prediction accuracy.
The X3D model may operate at 29 FPS on the robot, whereas
the pipeline can run at 8 FPS when all steps are activated. The



TABLE II: State-of-Art HAR models comparison on the proposed dataset

Model Top1
(%)

Params
(M)

FLOPS
(G)

Views
(clips× crops)

Input Shape
(F ×H ×W )

C3D 88.53 78.02 38.54 10× 1 16× 112× 112
R(2+1)D 98.82 63.55 53.14 10× 3 8× 256× 256
Slowonly 98.53 31.64 54.75 10× 3 8× 256× 256

TimeSformer 93.53 121 196 1× 3 8× 224× 224
Swin-Transformer 96.47 49.5 166 4× 3 32× 224× 224

X3D 98.24 2.99 6.39 10× 3 16× 256× 256

The variation in the input’s spatial and temporal dimensions is due to the differences in the
original works, where various proposed input shapes exist.
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Fig. 5: Comparison of state-of-art HAR models on both
prediction accuracy and execution performance. The dots in
both graphs represent the scale of the models’ number of
parameters, which ranges from 2.99 to 121 million. The
larger the dot, the greater the number of parameters in the
corresponding model.

primary factor contributing to the performance degradation
in our system is the communication overhead and resource
sharing between different stages of the process. In the context
of the ROS, which utilizes the TCPROS communication
protocol, these communication patterns play a critical role
in facilitating data exchange and coordination among various
components of the robotic system. Finally, Figure 6 provides
a more in-depth analysis of the X3D model’s performance on

our proposed dataset depicting the respective confusion matrix.
Due to variations in system hardware, DNN models employed
across pipeline stages, and the proposed end-to-end solutions,
it is difficult to directly compare our suggested method to the
rest of the works previously describen in Section II.
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Fig. 6: The Confusion Matrix of the X3D model on the
proposed dataset

V. CONCLUSION

In this study, we have introduced a Human Action Recog-
nition pipeline designed specifically for autonomous mobile
service robots. We prioritise lightweight and resource-efficient
solutions at each stage of the pipeline to overcome mobile
robot computational limitations and achieve near real-time,
on-device performance with high FPS. To ensure the appli-
cability of our HAR model to daily activities in domestic
environments, we have recorded a new dataset from the robot’s
perspective and evaluated our system on that. In the future,
we plan to explore the inclusion of additional semantic infor-
mation such as skeletal keypoints or scene objects to enhance
the system’s performance. Future considerations might include
adding activity classes to the dataset, and investigating ways
to perform HAR while the mobile robot is moving to address
camera motion issues.
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